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Resumen 

Este documento se enfoca a la investigación del modelado de un proceso sulfato reductor 

utilizando a Desulfovibrio alaskensis 6SR la cual creció usando agua congénita y Postgate 

C como medio de cultivo; para los dos casos se implementaron modelos cinéticos no 

estructurados como el de Monod y Levenspiel para representar el crecimiento de D. 

alaskensis 6SR en sus respectivos medios. Se evaluó la influencia de la calidad de los datos 

experimentales sobre la exactitud de la identificación paramétrica del modelado. Después 

de la estimación de los parámetros, los intervalos de confianza se evaluaron a través de un 

método numérico basado en la matriz de información de Fisher (MIF). Con esta 

información de la MIF, se observó que la fiabilidad del valor de los parámetros estimados 

aumenta al disminuir el error de medición de los datos y al aumentar la frecuencia de 

muestreo, las ilustraciones numéricas consideradas en este trabajo permiten mostrar una 

mejora utilizando la MIF. 
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Abstract 

In this paper a modeling approach of the sulfate-reducing process with sulfate reducing 

bacteria  Desulfovibrio alaskensis 6SR, using congenital water and medium Postgate C as 

culture media was investigated; for this purpose, a typical unstructured kinetic models 

Monod and Levenspiel were used to modeling the kinetics of D. alaskensis 6SR growth, 

respectively. The influence of experimental data quality on parametric identification 

accuracy was evaluated on modeling approach. After estimating the parameters, the 

confidence intervals were assessed through a numerical method based on the Fisher 

Information Matrix. With this information from the FIM, it was observed that reliability of 

value of estimated parameters decreases with increasing measurement error of the data. 
Numerical illustrations considered in this work show considerable improvement of the new 

FIM estimator. 

Keywords: sulfate-reducing process, modeling, D. alaskensis 6SR, Fisher Information Matrix 

1. Introduction 

Sulfate-reducing processes (SRP) have 

now been widely studied due to their 

multiple applications as bioremediation 

processes. For example its application in 

metal removal, recovery of valuable 

metals as metallic sulfide (López et al. 

2013; Gallegos-Garcia et al. 2009), as 

well as in the removal and reduction of 

heavy metals (e.g., Immobilization of 

heavy metals through microbial mediated 

reduction and precipitation is now of 

considerable interest) (White et al. 2003). 

Sulfate-reducing bacteria (SRB) of the 

genus Desulfovibrio are the most widely 

studied due to their potential application 

in the process of bioremediation, with D. 

vulgaris and D. desulfuricans species 

which have major applications in the 

bioremediation of soil and water with 

different metals (Acha et al. 2012). But in 

recent years, new species of this genus 

has been isolated and identified as species 

D. alaskensis (Feio et al. 2004) and D. 

alaskensis 6SR (Neria-González et al. 

2006). that were isolated in pipelines 

carrying oil. D. alaskenis 6SR has shown 

high resistance to heavy metals like 

cadmium and chromium and high 

concentrations of hydrogen sulfide 

(López et al. 2013). To exploit these 

advantages of bacteria D. alaskensis 6SR 

in bioremediation processes, an important 

aspect is to develop a mathematical 

model for this biological system for 

specific process in order to analyze the 

system behavior, in particular the 

response to external stimuli and 

perturbations; understanding biological 

processes; suggest new hypotheses and 

experiments to test them. However, 

modeling of these processes, i.e., 

developing a mathematical model, is 

directly related to the identification of 

parameters (or the selection) present in 

the equations that characterize the process 

dynamics.  Model parameters are 

estimated through minimization 

algorithms with respect to experimental 

data and, afterwards, the calibration of 

model can be used for process 

improvement (e.g., in process design or 

process control). Therefore, the 

estimation of precise parameters values is 

a major issue in the construction of 

biological models, because the model 

behavior may be strongly dependent on 

the parameters (Van Riel et al. 2006), 

whereby each parameter has an 

uncertainty which needs to be considered 
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(Omlin et al. 2001; Marsili-Libelli et al. 

2003). 

The Fisher information matrix (FIM) is a 

critical quantity in several aspects of 

mathematical modeling, including input 

selection and confidence region 

calculation. Therefore, the name 

“information matrix” is used to indicate 

that a larger FIM (in the matrix sense 

(positive semi-definiteness as just 

mentioned) is associated with a smaller 

covariance matrix (i.e., more 

information), while a smaller FIM is 

associated with a larger covariance matrix 

(i.e., less information). Some important 

areas of applications of FIM include, to 

name a few, confidence interval 

computation of model parameter 

(Ŝimandl et al. 2001), configuration of 

experimental design involving linear 

(Chryssolouris et al. 1996) and nonlinear 

models (Spall et al. 2003).  

Recently, the importance of assessing the 

precision and confidence interval of the 

parameter estimation from experimental 

data has been investigated by researchers 

in different systems (Chryssolouris et al. 

1996; Spall et al. 2003; Insel et al. 2003), 

but confidence interval assessment is not 

a straightforward task since many 

different factors are involved such as the 

experimental data and of course the 

model structure. This enables identifying 

a set of experiments and model settings 

that deliver the most sensitive to the 

unknown parameters measurement data 

and thus avoiding a trial and error 

approach to seek for solutions.  

The model itself relates the equations, 

input factors, parameters and variables 

characterizing the process with the input 

factors belonging to a set of probability 

distribution associated with a quite 

number of uncertainty sources including 

errors arising from measurement, 

insufficient amount of information and 

poor or partial understanding of the 

mechanisms and driving forces. However, 

it is of paramount importance in the 

modeling practice, evaluate the 

confidence region of the model by way of 

assessing the uncertainties relating the 

model inputs with the output in any given 

situation (Saltelli et al. 2000). Hence a 

robust technique for model identification 

and validation should be used especially 

for complex systems described by 

differential-algebraic equations, DAEs 

(Donoso-Bravo et al. 2011). 

In this paper, we model the SRP using 

SRB D. alaskensis 6SR, grown in two 

different media: congenital water (CW) 

and Postgate C medium (PCM), the 

importance of confidence interval of the 

parameter estimation from experimental 

data for SRP in each media was 

investigated for each model proposed. We 

consider two different kinetic models 

unstructured: Monod and Levenspiel to 

model the growth of bacteria, respectively 

using CW and PCM as medium of 

growth. 

The parameter estimation was carried out 

with classical simplex Nelder and Mead 

minimization algorithm, using as a cost 

function the norm of the differences 

between the experimental data and the 

model. The confidence intervals were 

assessed through a numerical method 

based on the Fisher Information Matrix 

(FIM). The current work proposes an 

extension of the re-sampling algorithm in 

order to enhance the statistical qualities of 

the estimator of the FIM. This modified 

re-sampling algorithm is useful in those 

cases where the FIM has a structure with 

some elements being analytically known 

from prior information and the others 

being unknown. 
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2. Methodology 

2.1 Experimental section 

2.1.1 Microorganism: sulfate-

reducing bacteria (SRB) 

D. alaskensis 6SR was isolated from 

biofilm samples, it was identified by 16S 

rRNA gene sequencing and analysis 

(Neria-González et al. 2006). This strain 

was routinely cultivated and maintained 

on Postgate C medium according to 

Neria-González et al. (2006). 

2.1.2 Batch cultures: congenital 

water 

 A sample of congenital water (CW) was 

obtained of an oil pipeline located in the 

Mexican Southeast region. Chemical 

determination of water: chlorides 64 000 

g L
-1

, sulfur 178 g L
-1

, sulfate 350 to 400 

g L
-1

, pH 8.84. A 1000 ml aliquot of CW 

was saturated whit N2 by 1 hour and was 

enriched with sodium lactate 6 ml, yeast 

extract 0.5 g, and reducing solution 5 ml 

(acid ascorbic 1 g L
-1

, and sodium 

thioglicolate, 1 g L
-1

). Potential of 

hydrogen (pH) was adjusted to 7 with 1 

NKOH. Then 90 ml CW medium was 

distributed in serum bottles of 160 ml 

using Hungate’s technique10 and they 

were autoclaved at 120 ºC for 15 min. 

The initial cultures of D. alaskensis 6SR 

in Postgate C medium11 were used to 

inoculate 45 ml of CW medium. Culture 

was incubated at 20 days to 37ºC under 

batch operation conditions. 

 Subsequently, 10 ml aliquot of this 

culture was used to inoculate several 

bottles with CW medium at different 

times under same conditions. Bacterial 

growth was followed through optical 

density (OD) measurements, sulfate 

consumption and sulfide production. 

Samples from the cultures were taken 

anaerobically each hour. Sulfate in the 

medium was measured by the 

turbidimetric method based on the 

precipitation of barium. Also, the 

production of sulfide was measured by a 

colorimetric method. The OD reading for 

cell growth was transformed to dry 

weight (concentration) through a standard 

growth curve. Data were analyzed to 

determine the growth kinetics parameters 

according to the Monod model.  

2.1.3 Batch cultures: Postgate C 

medium 

Experiments were carried out using the 

modified nutrient Postgate C medium, 

which contains  and this 

does not contain  (Postgate et al. 

1984). The composition of the growth 

medium for D. alaskensis 6SR, consisted 

of 4.5 g/l sodium lactate,  sodium 

citrate,  yeast extract, 

,  

, , 

, 

,  

and the volume was made up to  with 

distilled water and  of the solution was 

adjusted to . Before autoclaving, 

the medium was flushed with nitrogen 

( ) to remove 

dissolved oxygen in medium and the head 

space. 

The medium was adjusted to  and 

were placed  into serological 

bottles. These vessels were capped with 

crimped aluminum butyl rubber stoppers 

and sterilized by autoclaving at  

for . Each bottle was inoculated 

with a  aliquot of a preculture of D. 



AÑO 1, N° 3  JULIO-AGOSTO 2013 

alaskensis 6SR (  between  and 

). All cultures were incubated at  

for  days under batch operation 

conditions, in both cases using sulfate and 

sodium lactate as electron acceptor and 

donor respectively, using the same 

techniques previously described. 

 

3. Numerical section 

3.1 Mathematical model of the 

bioreactor 

3.1.1 Case study: Monod as kinetic 

model for SRP 

The following mathematical model is 

proposed, based on classical mass 

balances for biomass, sulfate (substrate) 

and sulfide (product) concentrations, 

considering batch operation: 

Biomass ( ) for growth of D. alaskensis 

6SR in  CW: 

                                                                                                      

(1)  

Substrate ( ): 

                                                                  

(2) 

Sulfide ( ): 

                                                                             

(3) 

3.1.2 Case study: Levenspiel as 

kinetic model for SRP 

Biomass ( ) for growth of D. alaskensis 

6SR in Postgate C as medium: 

                                                                                  

(4) 

Substrate ( ): 

                                                                           

(5) 

Sulfide ( ): 

                                                                             

(6) 

In this study, increase in cell 

concentration ( ),  for cultures 

of SRP obeying the Monod et al. (1949) 

rate law (congenital water as medium) 

and Levenspiel et al. (1988) rate law 

(Postgate C as medium) for example, 

these term becomes: 

                                                                                                     

(7) 

                                                                                     

(8) 

In order to express the models (1)-(3) and 

(4)-(6) in the standard state-space form. 

The state vector is defined as 

;                                                                                                 

(9)                    

Then, the models in eqs (1)-(3) and (4)-

(6) can be represented as 
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(10a) 

                                                                                                                           

(10b) 

Therefore, the biological systems model 

discussed here (equations (1)-(6) and (4)-

(6) with eqs (7) and (8), respectively) are 

system of ODE’s that is dependent on a 

certain parameter set  and initial 

conditions . 

Where   

 , , and   are respectively cell 

concentration, substrate, and product in 

the reaction mixed. 

 = measurement vector 

(ideal case) 

 = system states in the 

reactor 

 reaction kinetics 

parameter vector 

= specific product production rate 

= specific substrate consumption rate 

 maximum specific growth rate 

 constant of cell death 

 substrate saturation constant 

 = yields 

 product inhibition constant 

constant 

= time 

The output measurement considered in 

this study was the substrate (sulfate) 

uptake rate (SUR): 

                                                                                                             

(11) 

Basic models for the SRP here (equations 

(1)-(6)) considered that sulfate-reducing 

microorganism utilize sulfate and the 

carbon source (lactate in this study) to 

produce carbon dioxide and hydrogen 

sulfide (Cao et al. 2012). Consequently, 

for sulfate reducing reactors, the rates of 

sulfate consumption as well as the rates of 

hydrogen production and sulfide are 

proportional to the rate of consumption of 

carbon source. Basis of proportionality is 

defined by the stoichiometry of the 

reaction (equation (12)). However, in this 

work we only considered in developing 

the basic models, compounds in the liquid 

phase (equations (1)-(6)).  

 

(12)                                                                              

3.2 Parameter estimation and 

confidence interval 

Estimating the parameter ( ) related to 

the models proposed for the SRP can be 

estimated using a minimization algorithm 

(equation (13)), this algorithm considers 

the squared errors, , in this algorithm 

considers the minimization of the squared 

errors between model outputs  and 

the measured outputs , with  as a 

certain sampling point.  is defined as a 
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weighting matrix to balance the effect of 

each kind of measurement. 

(13) 

where  is the number of measurements 

and  is the parameters set used to 

calculate the model outputs.  

Confidence interval for the estimated 

parameters is based on the Fisher 

Information matrix (FIM) (Dochain et al. 

2001).  

This matrix relating the amount of 

information contained in the experimental 

data. The FIM can be calculated by 

linearizing the output signals of the 

system studied in the area around optimal 

parameter values  . 

Linearization of the outputs for each 

parameter can be expressed as in equation 

(14). Mathematically, the sensitivity 

coefficients are the first-order derivatives 

of model outputs with respect to the 

model parameters 

                                                                                                       

(14) 

Where  is the  model output and  is 

the model input parameter. These 

differential equations are differential 

output  with respect to the model input 

parameter  over time (Khalil et al. 

2002). 

                                                                    

(15) 

Thus, (15) can be rewritten as  

(16) 

A procedure for calculating   is to 

append the variational equations (16) with 

the original state equation (11) to 

obtaining the ( ) augmented 

equation 

                                                                                              

(17a) 

                                                               

(17b) 

The matrix ,  , ,  and  have 

the following definition with  (i.e., 

only considered a parameter): 

, ,    

                                                                                                         

(18) 

The FIM is used to summarize 

information related to the uncertainties 

and dependencies between the parameter 

estimates ( ): 

                                                                                           

(19) 
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The FIM is a square matrix with same 

number of columns and rows as the 

number parameters to estimate.  is also 

a square matrix with the same number of 

columns and rows as output 

measurements. 

If we consider the first case (eqs (1)-(3) 

and (7)), the parametric sensitivity matrix 

 is given by eq (17b). This model 

contains four model parameters, 

 and  but in our case we 

only considered two model parameters 

 and the others were considered 

constant and acording with these model 

parameters: 

; 

                                                              

(20) 

then considering the eqs (17a); (18) and 

(20), therefore, the eq (17a) is defined by 

the following matrices with  

; 

 , therefore, 

the Jacobians   and  of  can be 

obtained easily, then, sensitivity of the 

states on the variation of the model 

parameters ( ) for this study case 

is  : 

                                                                     

(21) 

                                                                    

(22) 

                                                                  

(23) 

                                                                

(24) 

                                                                     

(25) 

                                                                    

(26) 

Therefore, equations (21)-(26) are the 

sensitivity functions for system (1)-(3), 

where (21)-(22), (23)-(24) and (25)-(26) 

represent sensitivity to the dynamics of 

biomass, substrate and product 

respectively. According with equations 

(21)-(26) the order for system (17b) is 6 

for the system (1)-(3) whit Monod as rate 

law (i.e., kinetic model for D. alaskensis 

6SR). A similar procedure can be used to 

obtain the differential equations for 

sensitivity functions to process using the 

Levenspiel model (equation (8)) in the 

equations (4)-(6) with 

  and 

, 

equations not shown here, in this case 

have the system (17b) is of order 

 (i.e., 12 sensitivity functions) 

and the order for system (17a)-(17b) is  

. 

If we continue with the calculation of the 

FIM for this system of study, the 

following FIM is obtained from eq (19): 



AÑO 1, N° 3  JULIO-AGOSTO 2013 

(27) 

  

here the FIM elements for certain time ( ) 

corresponds to  corresponds to the 

inverse of the covariance of the 

measurement noise of the output variable 

 for each sampling point. If the error is 

considered constant throughout the 

experiment  becomes a scalar 

instead of a vector.  

The calculation of the FIM matrix can 

obtain the following information about 

the quality of experimental data: 1) 

summarizes the quantity and quality of 

information obtained in each experiment 

as it considers the output sensitivity 

functions ( ) and the measurement errors 

of the experimental data, 2) the inverse of 

the FIM provides the lower bound of the 

parameter estimation error covariance 

matrix, which can be used for assessing 

the estimation uncertainty of  (Peteers 

& Hanzon et al. 1998). According with 1) 

and 2) the error covariance matrix is 

given by eq (28). 

                                                                                                              

(28) 

Then, the square root of the diagonal 

elements of the  can be used to 

approximate the standard errors for the  

 

estimated parameters  as in shown in eq 

(29) 

                                                                                                                

(29) 

Hence, the higher the FIM values, the 

lower the standard errors estimated. 

4. Results and analysis 

4.1 Experimental results 

Results showed that biomass, sulfate and 

dissolve sulfide in both cases were 

consumed (sulfate) and produced 

(biomass and sulfide) throughout the 

experiment at the first 50-100 hours in 

both experiments. Behavior of the SRB 

D. alaskensis 6SR in both study of cases 

was similar and marked by high levels 

sulfate reduction, and sulfide production. 

Results of sulfate reduction, sulfide 

production from batch cultures with CW 

and PCM are shown representatively in 

Fig. 1 and Fig 2 (experimental data with 

markers). 
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Fig. 1- Monod model validation with experimental data: (a) biomass, (b) sulfate and (c) 

sulfide, and (d) plot between residual and corresponding state variables. Data represents the 

mean of three replicates. 
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Fig. 2- Levenspiel model validation with experimental data: (a) biomass, (b) sulfate and (c) 

sulfide, and (d) Plot between residual and corresponding state variables. Data represents of 

the mean eight replicates. 
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However, the inhibition of the SRB began 

to be detected in PCM from hour 100 

onwards (Fig. 2 a), this inhibition effect 

was attributed to high hydrogen sulfide 

concentration (550 ± 50 mg L
-1

 as main in 

both experiments) as pointed out by Reis 

et al. (1992) in cultures using SRB. Final  

biomass, sulfate and dissolve sulfide 

concentrations for experiments are 

summarized in Table 1. According with 

these data, 9.7-21.3 % sulfate was 

converted to dissolved sulfide (45-56 mg 

L
-1

).  

 

Table 1- Biomass, sulfate and dissolve sulfide concentrations at the end of experiments 

 

 

Medium 

 

 

1
CW (mg L) 

 

 

2
PCM (mg L) 

The 

sulfate 

removal 

efficiency 

(%) 

 The sulfate 

consumption 

rate 

(mg L
-1

h
-1

) 

Biomass 
  

1
 

2
 

1
 

2  
Sulfate 

  
Sulfide   (

a
9.7%)  (

a
21.31%) 

pH 8.0 7.6 
 

aHydrogen sulfide in liquid phase with respect to the initial concentration of sulfate 

 

4.2 Experimental procedures  

First all, data were generated 

experimentally in batch cultures of SRB 

D. alaskensis 6SR with two different 

media (WC and PC). According to the 

analysis of experimental data, the growth 

kinetics of D. alaskensis 6SR was 

modeled with unstructured kinetic 

models. Bacteria growth in CW was 

modeled with Monod model (Fig. 1 solid 

line) and with Levenspiel model when 

bacteria used Postgate C as medium (Fig. 

2 solid line), experimental data are shown 

with markers. In both cases of study, the 

response variables measured were 

biomass , sulfate , and hydrogen 

sulfide . The parameter vector  was 

estimate through the minimization 

function FIM in search. The cost function 

was defined as the norm of vector 

resultant of the difference between 

experimental modeled data (eq (19)).  

The ,  and  profiles obtained using the 

optimal parameters (solid line Figs. 1 and 

2) were used for the calculation of 

sensitivity functions (eqs (17a)-(17b)) for 

each specific sampling time   for the two 

case studies (Fig. 3). In Fig. 3, shows 

only the behavior of the sensitivity 

function for the sulfate (eqs (23)-(24)), 

because from the control standpoint, this 

state has been considered sufficient to 

regulate and monitoring the PSR, 

therefore, the sensitivity of this state on 

the variation of the parameters in the 

process directly affect the rest of the 

states (Aguilar-Lopez et al. 2010). 

According with these results, for Monod 
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as kinetic model for SRP the maximum 

specific growth rate , was the 

parameter for which the SRP was more 

sensitive compared with the parameter  

(Fig. 3 a) and b) respectively, solid line). 

But for the PSR described by Levenspiel 

as kinetic model were the parameters  

and   (Fig. 3 .c) to f) respectively), 

also SRP was sensitive to the parameter  

(Fig. 3.e)).  

0 50 100 150
-200

-100

0

Y
y

3


m
a
x

 

 

0 50 100 150
0

1

2

Y
y

3
k

s

 

 

0 100 200
0

0.1

0.2

Y
y

3


m
a
x

 

 

0 100 200
0

500

1000

Y
y

3
k

s

 

 

0 100 200
-6000

-4000

-2000

0

Time, (h)

Y
y

3
n

 

 

0 100 200
0

1

2
x 10

4

Time, (h)

Y
y

3
k

d

 

 


max k

s


max

k
s

n k
d

b)

d)c)

a)

e) f)

 

Fig. 3- Sensitivity functions of substrate , with respect to  (a) and  (b) to  Monod as 

kinetic model for SRP and  (c) and  (d) ,   (e) and   (f)  to Levenspiel as kinetic 

model for SRP. 

4.3 Influence of quality of 

experimental data 

In order to infer the variability in the 

process of estimating the parameters in 

the SRP, the influence of the data quality 

was studied through variation of 

experimental data measurement error, 

according whit the model parameters and 

initial conditions in Tables 1 and 2. The 

results obtained using different 

measurement errors are depicted in Fig. 4. 

A value of 0.02 for the measurement of 

error (the optimal value of the parameters 

i.e., which minimize the cost function are 

shown in Table 3), and then we 

considered the variation of measurement 

error in the following 

domain . And as expected, an 

increase in the measurement error 

generates different values in the vector of 

estimated parameters (Fig. 4 a) and c), 

respectively Monod and Levenspiel) 

consequently, an increase in the 

confidence interval (Fig. 4 b) and d), 

respectively Monod and Levenspiel). 

Finally, in the SRP modeling in the two 

case studies, will assure the reliability of 

the values of the parameters estimated in 

two steps:  parameter optimization and 

parameter error assessment. 
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Table 1- Biomass, sulfate and dissolve sulfide concentrations at the end of experiments 

 

 

Medium 

 

 

1
CW (mg L) 

 

 

2
PCM (mg L) 

The 

sulfate 

removal 

efficiency 

(%) 

 The sulfate 

consumption 

rate 

(mg L
-1

h
-1

) 

Biomass 
  

1
 

2
 

1
 

2  
Sulfate 

  
Sulfide   (

a
9.7%)  (

a
21.31%) 

pH 8.0 7.6 
aHydrogen sulfide in liquid phase with respect to the initial concentration of sulfate 

 

Table 2. Model Parameters 

Known 
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Rate law,  Unknown 

parameters 
1
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2
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Yield:  

Measurement 

 error 

 

Final time 

(batch 

culture) 

 
 

 
 

 
 

 

  

 
 

 
 

 
 

 

  

1
 

2
 

 

 

 

  

Table 3. Initial conditions 

 

 

Initial condition for states 

Rate law,   

Equation 
1
Monod 

2
Levenspiel 

Values 

Initial biomass:  

Initial substrate:  

Initial product:  

 

 

 
 

 

 

 

 

(17a) 

initial conditions sensitivity    

(17b) 
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functions:   
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Fig. 4- The influence of the data quality: measurement error on the parameter estimation 

(left) above congenital water a) below Postgate C medium c) and  on the confidence 

interval assessment (right) above congenital water b) below Postgate C medium d) 

 

5. Conclusions 

A simple procedure to model the sulfate-

reducing process, using the bacteria 

Desulfovibrio alaskenis 6SR is presented. 

The procedure was applied to model the 

growth of bacteria in the two different 

culture media (congenital water and 

Postgate C). Growth kinetics was 

modeled by unstructured kinetic models 

(Monod and Levenspiel). The influence 

of the quality of experimental data on 

parametric identification process was 

studied by Fisher information matrix (in 

terms of proximity of the estimated value 

to the real one and in terms of confidence 

interval assessment). Overall, the results 

showed that increasing the measurement 

error (quality) implies a lower accuracy in 

the estimation of parameters. At this 

point, it is helpful to recall that such 

models are useful in the sense that they 

will describe specific situation, but that 

the full range of their utility is unknown. 

Accurate estimation and model validation 

can be performed using this methodology 

approach. It also provides a solution for 

the correlated parameters and high 
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standard deviations which are known to 

be common problems for the estimation 

of parameters from batch experiments. As 

a result, the initial conditions of the 

experiments should be well defined, 

depending upon the selected model. 
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