
Vol. 11, No. 62 Mayo - Junio 2023

44

A Heuristic proposal to minimize bottleneck and waiting time in a Flow Shop

Propuesta de heurística para minimizar el cuello de botella y el tiempo de espera en

Flujo Continuo

Ireta-Sánchez, P.H., Martínez-López, R.*

Division of Posgraduate Studies and Research; Tecnológico Nacional de México/Instituto Tecnológico de

Saltillo, Blvd. Venustiano Carranza No. 2400, Col. Tecnológico, Saltillo, 25280, Coahuila, México, C.P. 25280.

pedro.is@saltillo.tecnm.mx; ricardo.ml@saltillo.tecnm.mx*

Technological Innovation: Proposal of heuristics and relaxed model for batch processing

solution.

Industrial application area: Batch processing lines.

Received: october 18th, 2022

Accepted: march 14th, 2023

Abstract

This article presents a Heuristic proposal to minimize two situations that occur when machines

do not finish processing batches at the same time: 1) bottleneck when a machine takes more

time to finish a batch and 2) waiting time that a batch must wait before being processed by the

machine. To minimize both situations, batches must have the same processing time. To solve

the above, the Heuristic proposal will select the job with the longest processing time and the

number of pieces. Each piece will be a batch. The batch processing time is determined by the

piece with the longest processing time. To validate the efficiency of the heuristic, information

was collected from a case study of a metal-mechanic company. The Heuristic proposal was

compared with other heuristics that have been used to solve the batch processing such as: First

in-First Out (FIFO), Last in-First out (LIFO), Best Fit (BFF), First Fit (FF), Batch First Fit

(BFF), First Fit Longest Processing Time (FFLPT), Decreasing Batch Size (DECR), Processing

time to job size ratio increasing order (PIAI) and the Simplex method. The results showed an

considerable reduction of bottleneck and waiting time using the Heuristic proposal compared

with the others mentioned heuristic and the Simplex method.

Keywords: Optimization, Flow shop, Heuristic, Simplex, Metaheuristic.

Revista Internacional de Investigación e

Innovación Tecnológica

Página principal: www.riiit.com.mx

mailto:pedro.is@saltillo.tecnm.mx
mailto:ricardo.ml@saltillo.tecnm.mx
http://www.riiit.com.mx/

Vol. 11, No. 62 Mayo - Junio 2023

45

Resumen

Este artículo presenta una propuesta de Heurística para minimizar dos situaciones que ocurren

cuando las máquinas no terminan de procesar los lotes al mismo tiempo: 1) cuello de botella

cuando una máquina toma más tiempo en terminar de procesar el lote y 2) tiempo de espera que

un lote tiene que esperar para ser procesado por la máquina. Para minimizar ambas situaciones,

los lotes deberán tener el mismo tiempo de procesamiento. Para resolver lo anterior, la

propuesta de Heurística seleccionara el trabajo con el mayor tiempo de procesamiento y número

de piezas. Cada pieza será un lote. El tiempo de procesamiento del lote es determinado por la

pieza con el mayor tiempo de procesamiento. Para validar la eficiencia de la Heurística, se

recolecto información de un caso de estudio de una compañía metal mecánica. La propuesta de

Heurística se comparó con otras heurísticas que se han usado para resolver el procesamiento

por lotes, tales como: Primera Entrada- Primera Salida (FIFO), Primera Salida-Primera Entrada

(LIFO), Primer Ajuste (FF), Mejor Ajuste (BF), Primer Lote Ajustado (BFF), Primer Ajuste

Tiempo de procesamiento más largo (FFLPT), Tamaño del Lote Decreciente (DECR), Orden

creciente de la relación entre tiempo de procesamiento y tamaño del trabajo (PIAI) y Simplex.

Los resultados mostraron reducción considerable del cuello de botella y tiempo de espera al

usar la propuesta de Heurística comparado con las otras heurísticas mencionadas y método

Simplex.

Palabras claves: Optimización, Flujo continuo, Heurística, Simplex, Metaheurísticas.

1. Introduction

In a batch scheduling problem (BPM),

several jobs are grouped simultaneously on

a machine where the processing time of the

batch (makespan) is equal to the longest

processing time of the job in the batch.

According to Ling and Wang (2018) and

Chang and Wang (2004) [1-2], BPM is used

in manufacturing industries, for example,

heat treatment, environment stress, food,

pharmaceutical, etc. BPM has been applied

as a policy because it has a significant

economic impact on reducing costs, e.g.,

material handling, machine start-up, and

line balancing (Molla et al., 2014) [3].

Since BPM was introduced as an NP-hard

problem by (Coffman et al., 1984) [4],

several methods have been proposed from

an academic point of view (Chandru and

Uzsoy (1993), Bellanger et al., (2012),

Fuchigami and S. Rangel (2018) and

Mathirajan et al., 2014) [5-8]. Some

methods like heuristics sort the jobs

according to the processing time of the jobs

and then generate the batches initialized;

others sequence the jobs randomly, then the

first job is placed in the batch that has

enough space to accommodate it, and

finally, another heuristic rule combines the

manner to sort the jobs according to the

processing time to fit the jobs to each batch

then. Ikura and Gimple [9] introduced the

BPM in the literature in 1986, they

proposed the FirstOnly-Empty (FOE)

algorithm to create batches ordering the

jobs in non-decreasing way according to the

release (𝑟𝑗) time for identical job sizes (𝑠𝑗)

and a constant batch processing time. The

authors mentioned that machine capacity,𝐶,

is the number of jobs that can proceed at the

same time. The BPM becomes more

complicated when the jobs have different

processing times and, to solve it, the authors

address two important decisions: 1) How to

group jobs into batches? and 2) How to

sequence the batches? (Damodaran et al.,

(2012), and Fowler and. Mönch (2022))

[10-11].

Vol. 11, No. 62 Mayo - Junio 2023

46

At this point, it is necessary to establish that

grouping jobs is an equivalent bin-packing

problem, so the authors used the rule of first

fit (FF) to solve the BPM, and the manner

to generate batches depends on the

environment of the production process. For

a single machine, Uzsoy (1994) [12] cited

distinct heuristics that use FF: Best Fit (BF),

FF Longest Processing Time (FFLPT), FF

decreasing job sizes (FFDECR), FF

increasing the ratio of the processing time

to the size of the job (FFPIA) and FF

Shortest Processing Time (FFSPT); the

objective function is to minimize the total

competition time; the results indicated that

the heuristics using LPT present good

results. Ghazvini and Dupont (1998) [13]

researchers proposed three heuristics based

on the BF algorithm: Modified best Fit

(MBF), BF Greddy Ratio (BFGR), and

Dyna Algorithm on a single machine with

different jobs size to minimize the mean

flow time; the results show that Dyna

presents results near to the optimal solution.

Li et al., (2005) [14] researchers suggested

the Full-batch-longest-processing time rule

(FBLPT) to solve a problem where the jobs

can be split into different batches in a single

batch processing machine with distinct jobs

sizes; academics create the Schedule Split

Algorithm where they create a short batch

where they group the jobs with the same

processing time; the paper does not present

results. Chen et al., (2011) [15] researchers

present a Constrained Agglomerative

Clustering of Batches (CACB) to minimize

the makespan on a single machine and non-

identical job size, where the first part, the

jobs with identical processing time are

clustered and the jobs with distinct

processing time are grouped; the heuristic

was compared with Genetic Algorithm

(GA) and BFLPT; the outcome shows that

CACB performs better than GA and

BFLPT. Li and Li (2019) [16] present a

performer heuristic based on BF and LPT

where the jobs are identical in size and

processing time, the machine has limited

capacity, and the objective function is to

minimize the makespan: Enumeration-

based BFLPT decrease (EBFLPTD), the

heuristic was compared with another

heuristics: BFLPT, FFLPT and BFLPTD

and the authors generated 100 random

instances; the results indicated that

EBFLPTD outperforms the other heuristics.

Miaomiao et al., (2020) [17] postulated 3

algorithms: A1, A2, and A3; to solve a

batch processing machine with two limited

capacity parallel machines, the jobs have

the same processing time, a rejection

penalty is applied, and the objective

function is to minimize the makespan; the

researchers conclude that their proposes are

better than some existing bio-inspired

algorithms.

In the case of the flow shop, Johson (1954)

[18] propose a rule to obtain the optimal

sequence in a flow shop by dividing the jobs

in two sets; many researchers have

proposed heuristics to solve the flow shop

of batch processing machine (Manjeshwar

et al., 2009) [19]. Tang and Liu (2009) [20]

present a heuristic, H, to generate batches to

minimize the execution time with jobs that

are identical; the manner to schedule them

to the machine and transporter; the authors

create their instances, and commented on

the results show the heuristic performer to

find an optimal solution. Mirsanei et al.,

(2009) [21] established two heuristics:

Acceptance/Rejection algorithm (ARA)

and FLA algorithm which uses the BFF

algorithm and LSPT rule with Simulated

Annealing (SA) to minimize the makespan

with non-identical jobs sizes.; they

generated their instances; the results

indicate that FLA algorithm with SA

(FLSA) performs better than ARA with SA

(ARSA). Lin and Liao (2012) [22]

established three heuristics: Full Batch

Earliest Due Date (FBEDD), Full Batch

Family Shortest (FBFS), and Rolling FBFS

(RFBFS) to solve a flow shop problem

where the jobs have the same family and the

batch processing time is common and the

batch setup time is constant; the objective is

to minimize the weighted sum of makespan,

total completion time and total tardiness; to

Vol. 11, No. 62 Mayo - Junio 2023

47

prove the validity of the heuristic, a mixed

integer programming (MIP) model was

developed and random instances were

created and the study case information was

used; the results show that RFBFS is better

than the other methods. Baskar et al.,

(2018) [23] compared different heuristics

based on the Nawaz, Enscore, Ham (NEH)

algorithm to minimize makespan in a

permutation flow show: NEHOA,

NEHOAPSD, NEHO, NEHABXA;

NEHABXB, NEHABXC, NEHABYA,

NEHABYB, and NEHABYC; they used

their instances. Han and Lee (2021) [24]

researchers modified the NEH algorithm

(MNEH) and contrasted it with GA and

Iterated Greedy Algorithm (IGE), SA, and

simplex method to minimize the makespan

in a two-stage assembly flow shop with

limited waiting time as a principal

constraint; to test the proposal, random

instances were generated, the results show

that GA and IGE obtained good solutions

for small and large problems than the other

methods. Lo and Lin (2021) [25]

researchers created two heuristics: JR-time

permutation Heuristic and JR-resource

Non-permutation Heuristic and compared

them with Ant Colony Optimization to

minimize the makespan in a flow shop with

two different machines and non-identical

jobs, they compared with random instances

the heuristic and metaheuristics, the results

indicate that JR- resource non-permutation

obtained better makespan than the other

methods. Khalifa et al., (2021) [26] authors

investigated multiple machines in a Flow

Shop with the processing time, job weights,

and break machines that are fuzzy. The

researchers proposed a method that led to an

optimal non-crossing sequence to minimize

the total elapsed time under a fuzzy

environment. The result indicates that the

solution approach that no existing risk to

applying the solution in a real-world

problem because it is easy and simple to

understand.

This brief review of the state of the art

shows the different solutions methods and

the way to order jobs to generate batches in

a single machine and a continuous flow.

Most of the methods are based on the First

Fit heuristic to generate batches and send

them to the processing line. They proposed

some dispatching rules, for example, First

in First Out, STP, LPT, and LIFO. Further,

the authors assume that the sum of all the

dimensions of the jobs in each batch cannot

exceed the machine capacity, and always

propose to minimize the same objective

functions that mention by (Fuchigami and

Rangel, 2018; Fowler and Mönch, 2022,

and Pinedo (2016)) [7,11, 27]. This way of

creating batches does not guarantee the

machines finish processing them at the

same time, which results in two situations

that occur on the machines in the processing

line 1) bottleneck: the machine needs more

time to process a batch because it has a large

processing time than the other one and 2)

waiting time: the time that the batch is

waiting before the machine process it. In

both situations, a penalty is applied for each

minute of bottleneck and waiting time

generated.

Deriving from the above, it is important to

consider other objective functions and

restrictions that in the study case presented,

for example, take it into account that some

machines have enough space and consider

the number of batches that a production line

can process in a work shift.

Table 1 indicates the distinct heuristics and

assumptions that different authors

mentioned in their investigations to

generate batches. The first column gives the

name of the heuristic and the authors. The

machine environment column indicates if

the heuristic was used in a single machine

(S) or a flow shop (F). The machine

capacity column reveals if the heuristic

considers (Y) or not (N) the capacity of the

machine to generate the batches. The job

size column considers if the sizes of all jobs

are Identical or Non-Identical. Column

Objective function specifies if the heuristic

optimized one or more objective functions

Vol. 11, No. 62 Mayo - Junio 2023

48

mentioned by (Pinedo, (2016)). Column

Batches same pt indicates if the heuristic

created batches with the same processing

time. Finally, the column Sort jobs shows

the how the heuristic orders the jobs

decreasingly (DEC)/Non-Dec or randomly

(R).

Table 1. Assumptions that the methods used to create batches.

Heuristic

Machine

environment

Machine

capacity

Job size Objective

function

Batches

same pt

Sort jobs

S F Y N Identical Non-

Identical

Y N Y N DEC/

NON-

DEC

R

FF

(Coffman

et al. [4])

    

BFF (Uzsoy 1998

[12])

     

FFLPT

FFDECR

FFPIAI

FFSPT (Uzsoy

1998 [12])

     

MBF, BFGR, Dyna

(Ghazvini et al.

[13])

     

FBLPT

(Li et al., [14])

     

CACB

(Chen et al. [15])

     

EBFLPTD

(Li et al. [16])

    

A1, A2, A3

(Miaomiao et al.

[17])

     

H

(Tang and Peng

[20])

      

ARASA, FLASA

(Mirsanei et al.

[21])

      

FBEDD, FBF,

RFBFS

(Lin et al. [22])

      

Distinct heuristic

based on NEH

(Baskar et al. [23])

      

S=Single machine, F=Flow shop, Y=Yes, N=No, pt.=processing time, DEC=Decrease, NON-DEC= Non-decrease,

R=Random.

*Source: Authors

Derive from above, this work presents a

Heuristic proposal to generate batches that

minimize the bottleneck and the waiting

time for the continuous processing flow.

This heuristic is based on the way jobs are

painted in a metal-mechanical company in

Saltillo, Coahuila. The company has a

painting line with three cabins in continuous

flow. Each job has the same processing time

for all cabins. The cabins have enough

space in square meters to process the jobs

inside. The jobs are placed in an open area

named work in process (WIP) to be sent to

the first cabin using the First in First Out

(FIFO) rule. The first cabin is the washing

cabin where each job is sandblasted to

Vol. 11, No. 62 Mayo - Junio 2023

49

remove abrasive particles and send to the

second cabin. The second cabin is where the

jobs are painted in a single color, according

to the production schedule, when the jobs

are painted, they are sent to the drying

cabin. The final cabin is where the jobs are

drying. The problem begins when the

programmer using the FIFO rule, he does

not contemplate the following: 1) the FIFO

rule sequences the jobs to the production

line beginning with the first job that is at the

top of the production schedule list without

examinating that each job has a different

processing time and number of units

(elements); 2) each job can be split in a

number of elements; 3) the jobs in the

production schedule are painted with the

same color; and 4) the cabins have enough

space to combine different elements of

other jobs. The above results in two

important situations: 1) the bottleneck that

is generated when a workstation takes more

time to process a batch and 2) the waiting

time that batches stay out at the workstation.

Both situations generate an economic loss

of about 5,000 USD per minute of

bottleneck and 1,000 USD per minute of

waiting time. Using the standard file

notation established by (Graham, 1979)

[28], the case study is denoted as:

𝐹𝑚|𝑝𝑗, 𝑠𝑗 , 𝑏𝑎𝑡𝑐ℎ|𝑓 where Fm is the Flow

shop environment of the machine, 𝑝𝑗 is the

processing time of the job, 𝑠𝑗 is the size of

the job, batch all jobs grouped into batches

and 𝑓 is the objective function this case

minimize the bottleneck and the waiting

time.

To solve the two situations, the Heuristic

proposed to generate batches that should

have been finishing at the same time to be

sent synchronously to the next workstation

with the intention to minimize the

bottleneck and waiting time. The Heuristic

proposed to divide the job with the longest

processing time into a number of pieces it

had. Each piece is a batch, and the

processing time of the batch will be the time

it takes the piece to be processed. The rest

of the pieces from the other jobs will be

randomly selected to get into the batches,

beginning with the first piece, then the

second piece, and so on until the sum of

their processing time does not exceed the

batch processing time. Once all the pieces

are in a batch, they are put together in

“runs”. The “runs” are the number of

batches that will be processed in a work

shift. The contribution of this work is not

considering the machine's capacity to form

batches as a principal constraint as the other

methods use. It is necessary to mention that

the use of work shifts, allows to know about

the number of batches that will be processed

during the workday. Also, the Heuristic

proposed allows to identify which batches

created the bottleneck and idle times to

make solutions to prevent economic losses

that affect the performance of the company.

Finally, an adaptive linear programming

model based on the BPM is given which

considers the way that the Heuristic

proposed generated the batches without

considering the capacity of the machine and

assuming that the machines have the same

processing time, and the work shift is

considered knowing the number of the

batches that can be process in a work shift.

The remainder of the article is organized as

follows: Section 2, a literature review;

Section 3, a description of the mathematical

model used; Section 4, a description of the

methodology; Section 5, a computational

experiment and Section 6, conclusions, and

future work.

2. Materials and Methods

2.1 Batch processing machine

The manner that the methods mentioned in

section 1, to generate batches, consider that

once the process has started, it cannot be

interrupted, and it is not possible to add or

remove jobs to the batch until the process

has been completed (Kashan et al., (2006))

[29]. In addition, it is necessary to follow

the assumptions mentioned by (Zhou et al.,

(2016), and Li et al., (2013)) [30-31]: A set

of n orders or jobs exists (j). Each job has a

processing time (pj) and a dimension (sj).

Vol. 11, No. 62 Mayo - Junio 2023

50

Each machine has a processing capacity

(C), and the sum of the dimensions of the

jobs should not exceed the capacity of the

machine. The jobs are grouped into batches

b and form the set of batches to which they

belong B. Thus, b ϵ B, the batch processing

time will be the time of the job whose

processing time is the longer (𝑃𝑏 =

𝑚𝑎𝑥𝑗∈𝑏{𝑝𝑗}). Finally, the objective is to

minimize the total processing time

(makespan).

Derived from the above, the model that has

been used to solve the BPM as follows (Li

and Wang (2018), and Kashan et., al

(2006)) [1,29].

𝑀𝑖𝑛 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = ∑ 𝑃𝑗𝑏
𝑛
𝑏=1 (Eq. 1)

Subject to:
∑ 𝑋𝑗𝑏 = 1, 𝑗 = 1,2, . . . , 𝑚𝑚

𝑗=1 (Eq. 2)

∑ 𝑠𝑗𝑋𝑗𝑏 ≤ 𝐶𝑚
𝑗=1 (Eq. 3)

𝑃𝑏 = 𝑚𝑎𝑥𝑗∈𝑏{𝑃𝑗} (Eq. 4)

𝐶𝑏𝑚𝑎𝑥 ≥ 0, 𝑃𝑏 ≥ 0 (Eq. 5)

𝑋𝑗𝑏 ∈ {0,1} (Eq. 6)

Equation (1) represents the objective

function. Equations (2), (3), and (4) state

that all jobs must be part of a batch, the sum

of the dimensions of the jobs in the batch

must not exceed the capacity of the

machine, and the batch processing time will

be the processing time of the longest job in

that batch. Equations (5) and (6) indicate the

non-negative and binary values.

It is necessary to comment that the model

presented below does not consider to

produce batches with the same processing

time. This results the presence of

bottlenecks and waiting time in the

processing line causes economic losses for

the companies. In addition, the model does

not consider the working shift time to know

the number of batches that will be processed

during the workday.

2.2 Adaptation model

To solve the problem described in section 1,

an adaptation model was generated based

on the BPM proposed by (Li and Wang

(2018)), [1]. In the adaptation, variables,

and restrictions are presented to generate

batches that have the same processing time

in order to minimize two situations that are

responsible for the losses: 1) the bottleneck

that is generated when a workstation takes

more time to process a batch and 2) the

waiting time that batches stay outside at the

workstation. In addition, this model

considers the following assumptions: once

the process has started, it cannot be

interrupted, pieces can be exchanged

between batches before they enter the

processing line or cabin, the batch

processing time is determined by the piece

that has the longest processing time in the

batch; batches are grouped together to form

production “runs”; the machine has enough

space to process different pieces at the same

time. Table 2 presents the symbols and

notation used to solve the case study.

Table 2. Symbols and notations used in the relaxed model.

Symbols Notation

J Set of n jobs.

𝑗𝑖 The job selected to form batches.

The job with the longest processing time

and number of pieces.

𝑗𝑖
‘ The jobs do not select to form batches.

J= 𝑗𝑖 + 𝑗𝑖
‘ All the jobs will be processed in the processing line.

𝑃𝐶𝑆𝑖 A piece from 𝑗𝑖,.

𝑃𝐶𝑆𝑖
‘ A piece from 𝑗𝑖

‘ .

𝑇𝑃𝐶𝑆𝑖 The processing time for 𝑃𝐶𝑆𝑖 .

𝑇𝑃𝐶𝑆𝑖
‘ The processing time for 𝑃𝐶𝑆𝑖

‘.

𝑏 All 𝑃𝐶𝑆𝑖 𝑎𝑛𝑑 𝑃𝐶𝑆𝑖
‘ are grouped in a batch.

Vol. 11, No. 62 Mayo - Junio 2023

51

𝑇𝑃𝑏𝑖 The total processing time of the batch is equal to the processing time of

𝑇𝑃𝐶𝑆𝑖 .

𝑃𝑟 Processing runs. All batches are group in runs.

𝑊𝑠 Work shift.

𝑇𝑃𝑟 Processing time of the predecessor run.

𝑇𝑃𝑟+1 Processing time of the successor run.
*Source: Authors.

Derived from above, the model that has been used to

solve the problem is as follows:

𝑀𝑖𝑛 (𝑇𝑃𝑟 − 𝑇𝑃𝑟+1) (Eq. 1)

Subject to:

𝐽 = 𝑗𝑖 ∪ 𝑗𝑖
´ (Eq. 2)

𝑗𝑖 = 𝑏𝑖 (Eq. 3)

∑ 𝑇𝑃𝐶𝑆𝑖
‘𝑛

𝑖=1 ≤ 𝑇𝑏𝑖 (Eq. 4)

∑ 𝑃𝐶𝑆𝑖𝑏∈𝐵 = 1, ∑ 𝑃𝐶𝑆𝑖
‘

𝑏∈𝐵 = 1 (Eq. 5)

∑ 𝑏𝑖 = 𝑃𝑟
𝑛
𝑏=1 (Eq. 6)

𝑇𝑃𝑟 ≤ 𝑊𝑠 (Eq. 7)

Equation (1) represents the objective

function that it is the difference in

processing time between the predecessor

(𝑇𝑃𝑟) and the successor (𝑇𝑃𝑟+1), the

production runs should be minimal.

Constraint (2) is the set of all jobs that are

in the production schedule. Constraint (3)

explain the piece that has the largest

processing time heads the batch. Constraint

(4) indicates that the sum of the processing

times of the pieces that do not lead each

batch must not exceed the processing time

that leads the batch. Constraint (5) ensures

that each piece will be in a batch. Constraint

(6) determines that all batches are grouped

in a processing run. Finally, constraint (7)

guarantees that the processing time of the

run does not exceed the time of the work

shift.

2.3. Heuristic proposed.

The Heuristic proposed selects the job with

the longest processing time and a number of

pieces. The selected job will be divided into

pieces and each piece is a batch. The

processing time of the batch is the

processing time of the selected piece. The

remaining jobs are divided into pieces and

assigned randomly to the first available

batch until the sum of their processing time

exceeds the batch processing time. If no

batches are available and there are still

pieces that have not been assigned, a new

batch is generated using the piece with the

longest processing time. This process is

finished when all the pieces are assigned in

a batch. The batches are the added to create

“productions run”. Each production run

cannot exceed the time of the work shift.

Next, subtract the processing time of the

predecessor production run and the

successor run. If the result is a negative

value, it is a bottleneck, otherwise, a waiting

time is present. To minimize the bottleneck

and waiting time, exchange elements

between the runs that created the

bottleneck. If the bottleneck decreases and

the waiting time increases, continue with

the exchange until the bottleneck is close to

zero or zero.

The pseudo-code to generate batches is

shown below:

Pseudo code of the proposed Heuristic.

START

(1) Select the job with the longest processing time J𝑖 and number of pieces, 𝑃𝐶𝑆𝑖.

(2) Divide J𝑖 in number of pieces 𝑃𝐶𝑆𝑖.

(3) Generate one batch 𝑏 with one 𝑃𝐶𝑆𝑖.The batch processing time is the processing

time of 𝑃𝐶𝑆𝑖.

(4) Divide the jobs, 𝐽𝑖
‘ , that are not selected in step 1 into elements 𝑃𝐶𝑆𝑖

‘.

Vol. 11, No. 62 Mayo - Junio 2023

52

(5) Select the first available 𝑏 and add pieces randomly from the elements 𝑃𝐶𝑆𝑖
‘

while the sum of their processing time does not exceed the processing time of

the batch.

(6) If the batch is full generate another batch and continue with step 5.

(7) If there are unassigned pieces 𝑃𝐶𝑆𝑖
‘ in a batch, generate new batches using the

𝑃𝐶𝑆𝑖
‘ with the longest processing time and continue with step 5.

(8) Sort the batches using the SPT rule.

(9) Group the batches in runs until their processing time does not exceed the work

shift (𝑊𝑠).

(10) Substract the processing time of the predecessor run (𝑇𝑃𝑟) and the successor

run (𝑇𝑃𝑟+1). If the result is a negative value, it is a bottleneck. Otherwise, a

waiting time is present.

(11) To minimize the bottleneck and waiting time, exchange elements between the

runs 𝑃𝐶𝑆𝑖
‘ . If the bottleneck decreases and the waiting time increases continue

the exhange until the bottleneck is zero or close to zero. If the waiting time

decreases but the bottleneck increase stop the process.

END

Figure 1 shows the flow chart of the

heuristic proposed to generate batches.

Figure 1. Flow chart of Heuristic proposed.

Vol. 11, No. 62 Mayo - Junio 2023

53

A comparison between the Heuristic

proposed and different heuristics is

presented below. The heuristics used in this

example were FF, BFF, FLPT, and BFLPT

and the programming linear model to

generate the batches is mentioned in section

2.1. In this case, the machine capacity is 10

and the work shift is 20 minutes. Table 3

indicates the production schedule with the

number of jobs that were used in this

comparison. Column 1 is the number of jobs

that will be processed in the processing line.

Column 2 expresses the number of pieces

for each job, in this case, the number of

pieces for the job will be the size (𝑠𝑗) that

different authors used to generate batches.

Columns 3 and 4 present the processing

time for each piece and the total processing

time for per job.

Table 3. Production schedule.

 Job number Number of pieces

per job

Processing time

per piece

Total processing time

J1 5 2 10

J2 3 3 9

J3 6 10 60

J4 4 5 20

J5 3 4 12

*Source: Authors.

The way in which the different heuristics

are obtained is presented below:

• The First Fit (FF) heuristic consists

of two steps: Step 1) Sequence the

jobs randomly. Step 2) select the job

at the head of the list and place it in

the first batch with enough space to

contain it. If the job does not fit in a

batch, a new batch will be created.

Repeat step 2 until all the jobs have

been put in a batch.

• The Best First Fit is described as

follows: Step 1) Sequence the jobs

randomly. Step 2) select the job at

the top of the list and move it to the

batch with the lowest residual

capacity (or the batch which is the

fullest). In the case that the job does

not fit in any existing batch, a new

batch will be generated.

• The FFLPT heuristic can be

described as follows: Step 1) Order

the jobs in decreasing order by their

processing time, and 2) Select the

hob at the head of the list and send it

in the first batch with sufficient

space to contain it. If the job does

not match in any batch, a new batch

will be created. Repeat step 2 until

all the job have been placed in a

batch.

• The BFLPT heuristic is described as

follows: Step 1) Organize the jobs in

decreasing order by their processing

time. Step 2) Take the job at the top

of the list and deposit it in a

reacheable batch that has the

smallest residual capacity. If the job

does not match any batch, a new

batch will be created. Repeat step 2.

Table 4 displays the results of the four

heuristics mentioned before. Rows 2 and 10

are step 1 which indicates in which manner

each heuristic sequences the jobs. Rows 3

and 11 present step 2 and the result that the

heuristics grouping the jobs to make the

batches.

The results, obtained by the heuristic, show

that all batches have different processing

times. This happens because the heuristic

takes as a main restriction that the size of

the job in the batch cannot exceed the

machine capacity. Also, as mentioned by

Vol. 11, No. 62 Mayo - Junio 2023

54

(Damodaran and Chang (2007)) [32] the

aim of the BPM is to generate a minimum

number of batches.

Table 4. Batches generate by FF, BF, FLPT and BFLPT.

FF BF

Step 1: random sequence:

 J2, J5, J1, J3, J4

 Step 1: random sequence:

 J2, J5, J1, J3, J4

Step 2 Step 2

Batch Jobs in

the Batch

Processing time

in minutes

per batch

Batch Jobs in

the Batch

Processing time

in minutes

per batch

B1 J2, J5 12 B1 J2, J5 12

B2 J1 10 B2 J1, J4 20

B3 J3, J4 60 B3 J3 60

Total processing

time = ∑ 𝑃𝑗𝑏
𝑛
𝑏=1

82 Total processing

time = ∑ 𝑃𝑗𝑏
𝑛
𝑏=1

92

FLPT BFLPT

Step 1: decreasing jobs according of

 their processing time: J3, J4, J5, J1, J2

Step 1: decreasing jobs according of

their processing time: J3, J4, J5, J1, J2

Step 2 Step 2

Batch Jobs in

the Batch

Processing

in minutes

per batch

Batch Jobs in

the Batch

Processing in

minutes

per batch

B1 J3, J4 60 B1 J3, J4 60

B2 J5, J1 12 B2 J5, J1 12

B3 J2 9 B3 J2 9

Total processing

time = ∑ 𝑃𝑗𝑏
𝑛
𝑏=1

81 Total processing

time = ∑ 𝑃𝑗𝑏
𝑛
𝑏=1

81

*Source: Authors.

In the case of the proposed Heuristic, it

selects job 3 to establish the batches. Job 3

has six pieces with 10 minutes of processing

time for each piece. The batch processing

time is 10 minutes. To identify each piece,

three-character were used: the first

character indicates the number of pieces;

the second character is the letter j which is

an abbreviation of job, and the third

character means the number of the job

where the job comes. For example, 3J5

expresses: 3 elements from job 5; 1j7 is one

element of job 7, and so on. Table 5 shows

the number of batches created by the

Heuristic proposed. Row 1 indicates the

number of batches generated by the

Heuristic proposed. Row 2 presents the

piece with the longest processing time in the

batch. Rows 3, 4, and 5 are the different

pieces from the other jobs. Finally, row 6 is

the batch processing time.

Table 5. Batches generated by the Heuristic proposed.

Number of

batches

B1 B2 B3 B4 B5 B6

 1J3

PT: 10

1J3

PT: 10

1J3

PT: 10

1J3

PT: 10

1J3

PT: 10

1J3

PT: 10

1J2

PT: 3

1J2

PT: 3

1J1

PT: 2

1J1

PT: 2

2J4

PT: 10

1J4

PT:5

1J1

PT: 2

1J5

PT: 4

1J5

PT: 4

1J5

PT: 4

1J4

PT: 5

1J2

PT: 3

2J1

PT: 4

Vol. 11, No. 62 Mayo - Junio 2023

55

Batch

processing

time

(𝑷𝒃

= 𝒎𝒂𝒙𝒋∈𝒃{𝒑𝒋})

10 10 10 10 10 10

*Source: Authors.

As can be seen in the table above, the

processing time of each batch is the same.

This result was obtained because the

Heuristic proposed does not consider the

machine capacity as a restriction to generate

the batches, such is the case of FF, BF,

FLPT, and BFLPT. Instead, the Heuristic

proposed makes batches with the same

processing time finish their processing at

the same time and send them synchronously

to the next machine to avoid a bottleneck

and waiting time. In addition, figure 2

shows the comparison of the total

processing time. It can be seen that the

Heuristic proposed has less total processing

time than the others.

Figure 2. A comparative between the distinct heuristics and the Heuristic proposed.

Source: Authors.

3. Computational experiment

As mentioned in section 1, this problem is

inspired by a real study case. Some

companies combine distinct jobs because

they have a common process, and the

capacity of the machine (cabin) is not

considered.

To verify the effectiveness of the Heuristic

proposed, information was collected from

the case study: 1) the dimensions in square

meters of the WIP, wash and paint cabins;

2) a production schedule that shows the

number of elements in each job,

dimensions, and processing time of each

one. Figure 3 shows the processing flow for

the painting area. The WIP is an open area

with enough space where the jobs are

ordered using the FIFO rule. The jobs are

painted in the same color. The next three

cabins where the jobs are sandblasted,

painted, and dried have enough space to

process batches.

Vol. 11, No. 62 Mayo - Junio 2023

56

Figure 3. Processing flow. Source: Authors.

Table 6 shows the data collected in the

framework of the study. Column 1 shows

the order number, columns 2 and 3 are the

dimensions and processing time of each

piece of the job; the fourth column shows

the number of piece of each job.

Table 6. Study case - Production Schedule.

Order

Number

Dimensions

Square

Meters

per piece

Process Time

 In minutes

per piece

Quantity

of pieces

Total

Dimension

Total Time

j1 10.63 14.02 6 63.80 60.17

j2 9.83 13.23 10 98.33 132.30

j3-a 11.55 88.99 8 80.82 622.91

J3-b 11.55 88.99 7 92.37 711.89

j4 3.86 2.53 11 42.56 714.67

j5 7.11 9.25 15 106.67 1130.10

Source: Authors.

The capacity of the paint cabin is indistinct,

and the work shift is 200 minutes. FIFO rule

obtained -1069.35 minutes of bottleneck

and 0 minutes of waiting time. This result

occurred because the programmer

introduces one job at a time. It is noteworthy

to mention that with the FIFO rule the

company loses $5,349,675 of dollars.

Table 7 shows the batches generated by the

proposed heuristic before grouping them

into runs. To understand the information, a

vocabulary is presented: The column named

Batch number indicates the number of the

generated batch B1, B2,B3; the

nomenclature, for example, J3 means one

piece from job number 3, J4 indicates one

piece from job 4 and so on. The column

named PT per job means the processing

time per job; the first number is the

processing time of head of the batches and

the rest of the numbers are the processing

time of remainder pieces of the batch. For

example, B1 is the batch number one, J3 is

one piece from job number 3 and the

processng time for this job is 88.99 minutes

(in this case it is the total processing time of

the batch); J4 means one piece from job

number 4 and the number 64.97 is the

processing time for the piece.

Vol. 11, No. 62 Mayo - Junio 2023

57

Table 7. Generated batches with the proposed Heuristic.

Batch

number

PT per

job

Batch

number

PT per

job

Batch

number

PT per

job

Batch

number

PT per

job

B1 B2 B3 B4

J3 88.99 J3 88.99 J3 88.99 J3 88.99

J4 64.97 J5 75.34 J4 64.97 J4 64.97

 J2 13.23

Batch

number

PT per

job

Batch

number

PT per

job

Batch

number

PT per

job

Batch

number

PT per

job

B5 B6 B7 B8

J3 88.99 J3 88.99 J3 88.99 J3 88.99

J4 64.97 J5 75.34 J5 75.34 J5 75.34

J1 10.03

Batch

number

PT per

job

Batch

number

PT per

job

Batch

number

PT per

job

Batch

number

PT per

job

B9 B10 B11 B12

J3 88.99 J3 88.99 J3 88.99 J3 88.99

J4 64.97 J5 75.34 J4 64.97 J1 10.03

Batch

number

PT per

job

Batch

number

PT per

job

Batch

number

PT per

job

Batch

number

PT per

job

B13 B14 B15 J5 75.34

J3 88.99 J3 88.99 J3 88.99

J1 10.03 J5 75.34 J5 75.34

J5 75.34

Batch

number

PT per

job

Batch

number

PT per

job

Batch

number

PT per

job

Batch

number

PT per

job

B16 B17 B 18 Time B19

J5 75.34 J5 75.34 J5 75.34 J5 75.34

J4 64.97 J2 13.23 J4 64.97 J4 64.97

 J2 13.23

Batch

number

PT per

job

Batch

number

PT per

job

Batch

number

PT per

job

B20 B21 B22

J5 75.34 J5 75.34 J5 75.34

J2, J2, J2 39.69 J4 64.97 J2 13.23

J1 10.3 J2 13.23

 J2 13.23

 J1 10.03

 J2 13.23

 J1 10.03

 J1 10.03
B=Batch, Time: processing time in minutes.
Source: Authors.

Using the Heuristic proposed as a solution

method, 12 batches with 88.99 minutes of

processing time and 7 batches with 75.30

minutes were obtained. The results allow us

to know the number of batches that have

different processing times and when they

are grouped in run aids, which of them

generate bottleneck and waiting time.

Figure 4 presents the processing time per

run. Runs 1 through 7 have the same time

because each run contains batches whose

processing time is one of the pieces with the

longest time. Run 8 has a processing time of

164.33 minutes because it was formed with

two batches at different times, one with

88.99 minutes and the other with 75.34

minutes, respectively. Finally, runs 9 to 11

contain two batches with the same

processing time of 75.34 minutes. The

bottleneck obtained was -27.3 minutes and

0 minutes for waiting time. The results

allow us to know the number of batches that

have different processing times. When

Vol. 11, No. 62 Mayo - Junio 2023

58

grouped in runs, it helps them generate the

bottlenecks and waiting time. With the

Heuristic proposed, the company loses

$27,300 dollars per minute generated by the

bottleneck.

.

Figure 4. Generated runs.
Source: Authors.

Figure 5 illustrates a comparison of the

processing times between the FIFO rule and

the Heuristic proposed. It can be observed

that when jobs are entered using the FIFO

rule, the processing times are different

because the rule does not group distinct jobs

to form batches. The runs that have the

same processing time is because the

Heuristic proposed selects batches with the

same time; otherwise, the runs that do not

have the same time is because it has two or

more batches with different time.

Figure 5. FIFO vs Heuristic proposed.

Source: Authors.

On the other hand, the Heuristic proposed

was compared with the Simplex method

using a commercial solver. The results

obtained were nineteen batches: fourteen

with 177.97 minutes, one batch with 153.96

minutes of processing time, three batches

with 194.67 minutes, and another batch

with 69.97 minutes. The results were

obtained because Simplex performs

combinations that comply with the

Vol. 11, No. 62 Mayo - Junio 2023

59

constraints of the problem: the batch

processing machine and the duration of the

work shift. Also, the results indicate that

Simplex does not generate good results as

mentioned by (Lo and Lin (2021) [25]. The

Simplex method obtained -40.95 minutes of

bottleneck and 153.95 minutes of waiting

time.

In this case, Simplex method generated

losses to the company in us$204,750, of

bottleneck and us$153,950 of waiting time.

Table 8 shows the results of the batches

obtained by Simplex. The first column is the

number of batches created; the second

column is the number of pieces contained in

the batch, and the third column is the

processing time.

Table 8. Processing Time per Batch Obtained by Simplex.

Batch Number Number of pieces Processing time

in minutes

1-14 3 177.97

15 1 153.96

16-18 1 194.97

19 1 69.97
Source: Authors.

As mentioned, the Heuristic proposed was

compared with other heuristics that have

been used by other authors to solve the

BPM. Table 9 shows the result obtained by

LIFO, SPT, LPT, BFF, FFLPT FFDECR,

and FFPIAI using the data collected from

the study case.

Table 9. Comparative between different heuristics.

Source: Authors.

The table shows that the result obtained by

the SPT rule is the same as the result

obtained by FIFO. This occurs because the

SPT organizes the jobs from shortest to

longest according to the processing times,

and in this case, it matched the ordering by

FIFO. The result of LPT was obtained

because this method orders the jobs from

longest to shortest, so the difference

between the previous batch minus the next

batch is always a positive number, which

indicates that the order will be waiting for a

certain time to be processed. For the rest of

the rules, a random sequence is generated to

create batches, and these result in different

processing times, leading to the presence of

bottleneck and waiting time. If these results

are compared with those obtained by the

Heuristic proposed, the latter reduced

considerably the bottleneck and did not

generate waiting time; both results are

obtained because the Heuristic proposed

from the beginning generates batches with

each of the pieces that have the longest

processing time and groups them in runs

taking the duration of the work shift.

As a part of the validation of the Heuristic

proposed, five random instances were

generated. The value of each parameter was

Author Method Bottleneck Waiting time USD

Bottleneck

USD

Waiting time

[22] LIFO 0 1069.93 0 $1,069,930

[22] SPT -1069.35 0 $5,346,750 0

[22] LPT 0 1069.35 0 $1,069,930

[13] BATCH

FIRST FIT

 (BFF)

-1649.46 1741.23 $8,247,300 $1,741,230

[13] FFLPT -60.36 17.502 $301,800 $17,502

[13] FFDECR -42.86 0 $214,300 0

[13] FFPIAI -1274.63 620.13 $6,373,150 $620,13

Vol. 11, No. 62 Mayo - Junio 2023

60

as similar as possible to the collected data in

the study case. It is necessary to mention

that only one value was generated by each

variable as mentioned by (Talliard, 1993)

([33]. The value of each parameter was

considered a discrete variable with a

uniform distribution. For this purpose, the

parameters used are: Total processing time

of each job 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [1, max 𝑇𝑡], machine

dimension 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [1, max 𝐷𝑡], and

number of pieces per job,

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [1, max 𝐶𝜖], where max is the

maximum value of each of the parameters

of the study case data.

Table 10 shows a comparison between the

results of the waiting time and the

bottleneck obtained by the Heuristic

proposed and different dispatch rules

(heuristic). The row is the name of the

instance. The Method column indicates the

name of the heuristic, and the Waiting time

and Bottleneck columns presents the results

in minutes by each heuristic. The number in

the box indicates the total time obtained by

the different solution methods. If the value

is positive, it refers to a waiting time,

otherwise it is a bottleneck.

Table 10. Results obtained Bottleneck and waiting time.

Instance 1

Instance 2

Method Waiting

time

Bottleneck Method Waiting

Time

Bottleneck

H 92 0 H 0 -32

FIFO 126 0 FIFO 179 0

LIFO 0 -126 LIFO 0 -179

STP 126 0 STP 0 -37

LTP 0 -126 LTP 179 0

BFF 710 -126 BFF 179 0

FFLPT 126 0 FFLPT 179 0

Instance 3

Instance 4

Method Waiting

time

Bottleneck Method Waiting

time

Bottleneck

H 20 0 H 3 0

FIFO 62 -44 FIFO 450 -270

LIFO 44 -62 LIFO 270 -450

STP 0 -42 STP 0 -335

LTP 160 0 LTP 335 0

BFF 62 -44 BFF 270 -129

FFLPT 42 0 FFLPT 270 0

Instance 5

Method Waiting

time

Bottleneck

H 41 0

FIFO 620 -1690.07

LIFO 1750.24 -620.13

STP 0 -1274.63

LTP 1274.63 0

BFF 787.04 -1202.51

FFLPT 1274.63 0

H: Heuristic proposed, BFF: Best First Fit, FFLPT: Longest Processing Time First Fit.

Source: Authors.

Vol. 11, No. 62 Mayo - Junio 2023

61

The results show that the Heuristic

proposed does not generate a bottleneck for

instances 1, 3, 4, and 5; in instance 2 LIFO,

STP, LTP, BFF, and FFLPT have not

obtained a bottleneck. For the waiting time

only in instance 2, the Heuristic proposed

did not present waiting time; for instance, 1

and 2 LIFO rule did not show waiting time;

for instances 2,3,4, and 5, the STP rule did

not generate any waiting time.

The results obtained for instances 1,3,4, and

5 indicate that the Heuristic proposed did

not generate a bottleneck, which means that

there is no penalty of USD 5,000 dollars per

minute; otherwise, in instance 2, the

proposed created a bottleneck, and it was

penalized with USD 160,000 although it

was less than the penalty of USD 895,000

and USD 185,000 by using LIFO and STP

rules.

For the waiting time, the Heuristic proposed

in instances 3, 4, and 5 generated lower

values than most of the dispatching rules

except with STP; these values indicate that

the difference in processing time between

the predecessor and successor runs is

minimal. In the case of instance 1, although

STP rule obtained a shorter waiting time

compared to FIFO, STP, BFFA, and

FFLPT, because it orders the jobs from the

shortest to the longest processing time and

add job by job to each batch until the batch

is full. The results indicate that the time was

not as close to zero, which indicates that the

processing time of the predecessor batch is

longer than that of the successor. In general,

the Heuristic proposed allows for reducing

the penalty of USD 1,000 per minute that a

run must wait to be processed.

Lastly, the Heuristic proposed performed

better than the other heuristics since it can

form batches by dividing the job whose

processing time is the longest of the whole

production calendar, in addition, once the

batches are formed, it makes runs

considering the work shift time leading to

know the total production time needed.

Conclusions and future work

In this article, a new Heuristic proposed to

generate batches with the same processing

time was proposed to help solve the BPM.

In the same order, a new relaxed

programming model was suggested. This

model considers how to generate batches to

minimize the bottleneck and waiting time.

The Heuristic proposed reduces the

bottleneck in a 100% compared with FIFO

rule. On the other hand, compared to the

Simplex method, the Heuristic proposed

reduces by 33.3% the bottleneck and 100%

the waiting time. In the same direction, five

non-deterministic random instances were

generated based on the information

collected from the case study. The results

indicate that the Heuristic proposed

compared to the LPT, SPT, LIFO, FIFO,

BFF and FFLPT heuristics, minimizes the

bottleneck and waiting time in an 82.7%

and 72.4% respectively.

In conclusion, the Heuristic proposed

generates batches with equal processing

times if the selected job has enough pieces

to head all batches without need to create

new ones with other pieces. Also, it can be

used in production process where the jobs

can be separated in pieces. Finally, the

heuristic allows to know the number of

batches that can process in a work shift.

As a future work, it is proposed to include

new restrictions to adjusts the model in a

neutrosophic environment, as mentioned by

(Kumar and Khalifa (2021)) [34], to

establish a range of acceptance of economic

losses causes by a machine failure, absence

of operators, lack of material and

transportation between different production

area. Moreover, include some decision

variables correlations, as mentioned in the

investment portfolio by (Kumar and

Khalifa (2020)) [35] , to give the advantages

for the investors the decision to conclude a

good return rate, risk loss rate and bank

interest rate. Also, add human restriction,

Vol. 11, No. 62 Mayo - Junio 2023

62

for example, occupational safety and

environmental care.

Finally, the use of other approximation

algorithms such as metaheuristic will be

studied.

Author Contributions

Conceptualization, P.I. methodology, P.I.;

validation, P.I; writing-original draft

preparation, P.I.; writing-review and

editing, R.M.; supervision, R.M. The

authors have read and agreed to the

published version of the manuscript.

Acknowledge

The author wishes to thank to the

Tecnológico Nacional de México/Instituto

Tecnológico de Saltillo for the support

obtained from the project 8479.20-P. Also,

to the National Council of Science and

Technology (CONACYT) for the

scholarship granted.

Conflicts of Interest

The authors declare do not have conflict any

conflict of interest.

References

[1] X. Li y Y. Wang, «Scheduling Batch

Processing Machine Using MAX-

MIN Ant System Algorithm

Improved by Local Search Method,»

Hindawi-Mathematical Problems in

Engineering, vol. 2018, pp. 1-10,

2018, doi:10.1155/2018/3124182.

[2] P. Chang y H. Wang, «A heuristic for

a batch processing machine

scheduled to minimise total

completion time with non-identical

job sizes,» The International Journal

of Advanced Manufacturing

Technology, vol. 24, pp. 614-620,

2004, doi:10.1007/s00170-003-

1740-9.

[3] S. Molla-Alizadeh-Zavardehi, R.

Tavakkoli-Moghaddam y F.

Hosseinzadeh Lotfi, «Hybrid

Metaheuristics for Solving a Fuzzy

Single Batch-Processing Machine

Scheduling Problem,» The Scientific

World Journal, vol. 14, pp. 1-10,

2014, doi: 10.1155/2014/214615.

[4] E. G. Coffman Jr., M. R. Garey y D.

S. Johnson, «Approximation

Algorithms for Bin-Packing — An

Updated Survey,» Algorithm Design

for Computer System Design, vol.

284, pp. 49-106, 1984, doi:

10.1007/978-3-7091-4338-4_3.

[5] V. Chandru y R. Uzsoy,

«Minimizing total completion time

on a batch processing machine with

job families,» Operations Research

Letters, vol. 13, pp. 61-65, 1993,

doi:10.1016/0167-6377(93)90030-

K.

[6] A. Bellanger, A. Janiak, M. Y.

Kovalyov y A. Oulamara,

«Scheduling an unbounded batching

machine with job processing time

compatibilities,» Discrete Applied

Mathematics, vol. 12, pp. 15-23,

2012,

doi:10.1016/j.dam.2011.09.004.

[7] H. Y. Fuchigami y S. Rangel, «A

survey of case studies in production

scheduling: Analysis and

perspectives,» Journal of

Computational Science, vol. 25, pp.

425-436, 2018,

10.1016/j.jocs.2017.06.004.

[8] M. Mathirajan, R. Gokhale y M.

Ramasubrama, «Modeling of

Scheduling Batch Processor in

Discrete Parts Manufacturing,» the

Supply Chain Strategies, Issues and

Models, London., Springer-Verlag,

2014, pp. 153-192, doi:10.1007/978-

1-4471-5352-8_7.

Vol. 11, No. 62 Mayo - Junio 2023

63

[9] Y. Ikura y M. Gimple, «Efficient

scheduling algorithms for a single

batch processing machine,»

Operations Research Letters, vol. 5,

nº 2, pp. 61-65, 1986,

doi:10.1016/0167-6377(86)90104-5.

[10] P. Damodaran, D. A.

Diyadawagamage, O. Ghrayeb y M.

C. Vélez-Gallego, «A particle swarm

optimization algorithm for

minimizing makespan of

nonidentical parallel batch

processing machines,» International

Journal of Advanced Manufacturing

Technology, vol. 58, p. 1131–1140,

2012, doi:10.1007/s00170-011-

3442-z.

[11] J. W. Fowler y L. Mönch, «A survey

of scheduling with parallel batch (p-

batch) processing,» European

Journal of Operational Research, vol.

298, pp. 1-24, 22, doi:

10.1016/j.ejor.2021.06.012.

[12] R. Uzsoy, «Scheduling a single

batch processing machine with non

identical job sizes,» International

Journal of Production Research, vol.

32, pp. 1615-1635, 1994,

doi:10.1080/00207549408957026.

[13] F. J. Ghazvini y L. Dupont,

«Minimizing mean flow times

criteria on a single batch processing

machine with non-identical jobs

sizes,» International Journal of

Production Economics, vol. 55, pp.

273-280, 1998, doi:10.1016/S0925-

5273(98)00067-X.

[14] S. Li, G. Li, X. Wang y . Q. Liu,

«Minimizing makespan on a single

batching machine with release times

and non-identical job sizes,»

Operations Research Letters, vol. 33,

pp. 157-164, 2005,

doi:10.1016/j.orl.2004.04.009.

[15] H. Chen, D. Bing y G. Q. Huang,

«Scheduling a batch processing

machine with non-identical job sizes:

a clustering perspective,»

International Journal of Production

Research, vol. 49, nº 19, pp. 5755-

5778, 2011,

doi:10.1080/00207543.2010.512620

.

[16] X. Li, Y. Li y Y. Wang,

«Minimizing makespan on a batch

processing machine using heuristics

improved by an enumeration

scheme,» International Journal of

Production Research, vol. 55, nº 1,

pp. 176-186, 2016,

doi:10.1080/00207543.2016.120076

2.

[17] J. Miaomiao , . L. Xiaoxia y . L.

Wenchang , «Single-Machine

Parallel-Batch Scheduling with

Nonidentical Job Sizes and

Rejection,» Mathematics, nº 258,

2020, doi.10.3390/math8020258.

[18] M. Johson, «Optimal two- and three-

stage production schedules with

setup times included,» Naval

Research Logistics Quarterly, nº 1,

pp. 61-68, 1954,

doi:org/10.1002/nav.3800010110.

[19] P. K. Manjeshwar, P. Damodaran y

K. Srihari, «Minimizing makespan in

a flow shop with two batch-

processing machine using simulated

annealing,» Robotics and Computer-

Integrated Manufacturing, vol. 25,

pp. 667-679, 2009,

doi:10.1016/j.rcim.2008.05.003.

[20] L. Tang y P. Liu, «Two-machine

flowshop scheduling problems

involving a batching machine with

transportation or deterioration

consideration,» Applied

Mathematical Modelling, vol. 33, pp.

Vol. 11, No. 62 Mayo - Junio 2023

64

1187-1199, 2009, doi:

10.1016/j.apm.2008.01.013.

[21] H. S. Mirsanei, B. Karimi y F. Jolai,

«Flow shop scheduling with two

batch processing machines and

nonidentical job sizes,» International

Journal of Advanced Manufacturing

Technology, vol. 45, nº 553, p. 45,

2009, doi: 10.1007/s00170-009-

1986-y.

[22] R. Lin y C.-J. Liao, «A case study of

batch scheduling for an assembly

shop,» International Journal of

Production Economics, vol. 139, pp.

473-483, 2012,

doi:10.1016/j.ijpe.2012.05.002.

[23] A. Baskar, M. A. Xavior y . N. Na,

«Analysis of a Few Simple

Heuristics for the Permutation Flow

Shop Scheduling Problems for any

Batch Processing Industry,»

Materials Today: Proceedings, vol.

5, p. 11762–11770, 2018, doi:

10.1016/j.matpr.2018.02.145.

[24] J.-H. Han y . J.-Y. Lee, «Heuristics

for a Two-Stage Assembly-Type

Flow Shop with Limited Waiting

Time Constraints,» Applied

Sciences, vol. 11, nº 23, 2021, doi:

10.3390/app112311240.

[25] T.-C. Lo y B. Lin, «Relocation

Scheduling in a Two-Machine Flow

Shop with Resource Recycling

Operations,» Mathematics, vol. 9, nº

1527, 2021, doi:

10.3390/math9131527.

[26] H. A. E.-W. Khalifa, S. S. Alodhaibi

y P. Kumar, «Solving Constrained

Flow-Shop Scheduling Problem

through Multistage Fuzzy Binding

Approach with Fuzzy Due Dates,»

Advances in Fuzzy Systems , p. 8,

2021, doi: 10.1155/2021/6697060.

[27] M. L. Pinedo, Scheduling: Theory,

Algorithms, and Systems. Fifth

Edition, New York: Springer, 2016.

[28] R. L. Graham, E. L. Lawler, J. K.

Lenstra y A. H. RinnooyKan,

«Optimization and Approximation in

Deterministic Sequencing and

Scheduling: a SURVEY,» Annals of

Discrete Mathematics, vol. 5, pp.

287-326, 1979, doi: 10.1016/S0167-

5060(08)70356-X.

[29] A. H. Kashan, B. Karimi y F. Jolai,

«Minimizing Makespan on a Single

Batch Processing Machine with

Non-identical Job Sizes: A Hybrid

Genetic Approach,» de European

Conference on Evolutionary

Computation in Combinatorial

Optimization, Budapest, 2006, doi:

10.1007/11730095_12.

[30] S.Zhou, M. Liu, H.Cheng y X. Li,

«An effective discrete differential

evolution algorithm for scheduling

uniform parallel batch processing

machines with non-identical

capacities and arbitrary job sizes,»

International Journal of Production

Economics, vol. 179, pp. 1-11, 2016,

doi:10.1016/j.ijpe.2016.05.014.

[31] X. Li, Y. Huang, Q. Tan y H. Chen,

«Scheduling unrelated parallel batch

processing machines with non-

identical job sizes,» Computers &

Operations Research, vol. 12, pp.

2983-299, 2013,

doi.org/10.1016/j.cor.2016.08.015.

[32] P. Damodaran y P.-Y. Chang,

«Heuristics to minimize makespan of

parallel batch processing machines,»

The International Journal of

Advanced Manufacturing

Technology, vol. 37, p. 1005–1013,

2007, doi: 10.1007/s00170-007-

1042-8.

Vol. 11, No. 62 Mayo - Junio 2023

65

[33] E. Talliard, «Benchmarks for basic

scheduling problems,» European

Journal of Operational Research, vol.

64, pp. 278-285, 1993, doi:

10.1016/0377-2217(93)90182-M.

[34] H. E. Khalifa, P. Kumar y S.

Mirjalili, «A KKM approach for

inverse capacitated transportation

problem in neutrosophic

environment,» Sādhanā- Springer

Nature, vol. 46, nº 166, 2021, doi:

10.1007/s12046-021-01682-5.

[35] P. Kumar y H. A. El- Wahed Khalifa,

«Solving fully neutrosophic linear

programming problem with

application to stock portfolio

selection,» Croatian Operational

Research Review, nº 11, pp. 165-

176, 2020,

doi:10.17535/crorr.2020.0014.

